Informational Content of Special Regressors in Heteroskedastic Binary Response Models1

نویسندگان

  • Songnian Chen
  • Shakeeb Khan
  • Xun Tang
چکیده

We quantify the informational content of special regressors in heteroskedastic binary regressions with median-independent or conditionally symmetric errors. We measure informational content by two criteria: the set of regressor values that help point identify coe¢ cients in latent payo¤s as in (Manski 1988); and the Fisher information of coe¢ cients as in (Chamberlain 1986). We …nd for median-independent errors, requiring one of the regressors to be “special" in a sense similar to (Lewbel 2000) does not add the identifying power or the information for coe¢ cients. Nonetheless it does help identify the error distribution and the average structural function. For conditionally symmetric errors (which were shown to add no informational content by (Manski 1988) and (Zheng 1995) without special regressors), the presence of a special regressor improves the identifying power by the criterion of (Manski 1988), and the Fisher information for coe¢ cients is strictly positive under mild conditions. We propose a new estimator for coe¢ cients that converges at the parametric rate under symmetric errors and a special regressor, and report its decent performance in small samples through simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Informational Content of Special Regressors in Heteroskedastic Binary Response Models

We quantify the identifying power of special regressors in heteroskedastic binary regressions with median-independent or conditionally symmetric errors. We measure the identifying power using two criteria: the set of regressor values that help point identify coe¢ cients in latent payo¤s as in (Manski 1988); and the Fisher information of coe¢-cients as in (Chamberlain 1986). We …nd for median-in...

متن کامل

A Simple Estimator for Binary Choice Models With Endogenous Regressors

This paper provides a few variants of a simple estimator for binary choice models with endogenous or mismeasured regressors, or with heteroskedastic errors, or with panel fixed effects. Unlike control function methods, which are generally only valid when endogenous regressors are continuous, the estimators proposed here can be used with limited, censored, continuous, or discrete endogenous regr...

متن کامل

Comparing Features of Convenient Estimators for Binary Choice Models With Endogenous Regressors

We discuss the relative advantages and disadvantages of four types of convenient estimators of binary choice models when regressors may be endogenous or mismeasured, or when errors are likely to be heteroskedastic. For example, such models arise when treatment is not randomly assigned and outcomes are binary. The estimators we compare are the two stage least squares linear probability model, ma...

متن کامل

Simple Estimators For Hard Problems: Endogeneity and Dependence in Binary Choice Related Models and Endogenous Selection or Treatment Model Estimation

This paper describes numerically simple estimators that can be used to estimate binary choice and other related models (such as selection and ordered choice models) when some regressors are endogenous or mismeasured. Simple estimators are provided that allow for discrete or otherwise limited endogenous regressors, lagged dependent variables and other dynamic effects, heteroskedastic and autocor...

متن کامل

Simple Estimators For Hard Problems: Endogeneity in Discrete Choice Related Models

This paper describes numerically simple estimators that can be used to estimate binary choice and other related models (such as selection and ordered choice models) when some regressors are endogenous or mismeasured. Simple estimators are provided that allow for discrete or otherwise limited endogenous regressors, lagged dependent variables and other dynamic effects, heteroskedastic and autocor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013